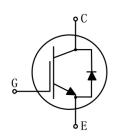


SSC65TR6GTF

Trench FSII Fast IGBT

> Features

V _{CES}	V _{GES}	lc
650V	±20V	12A@25℃
030 v	±20 v	6A@100°C


> Pin Configuration

Description

- High ruggedness performance.
- 10µs short circuit capability.
- Positive VCE (sat) temperature coefficient.
- High efficiency for motor control.
- Excellent current sharing in parallel operation.
- RoHS compliant.

TO-220F-3L (Top View)

Pin Configuration

Applications

- Home appliance
- Motor drives
- General inverter

Ordering Information

Device	Package	Shipping	
SSC65TR6GTF	TO-220F-3L	50/Tube	

Marking

(XXYY: Internal Traceability Code)

➤ Absolute Maximum Ratings (T_{vj}=25°C unless otherwise noted)

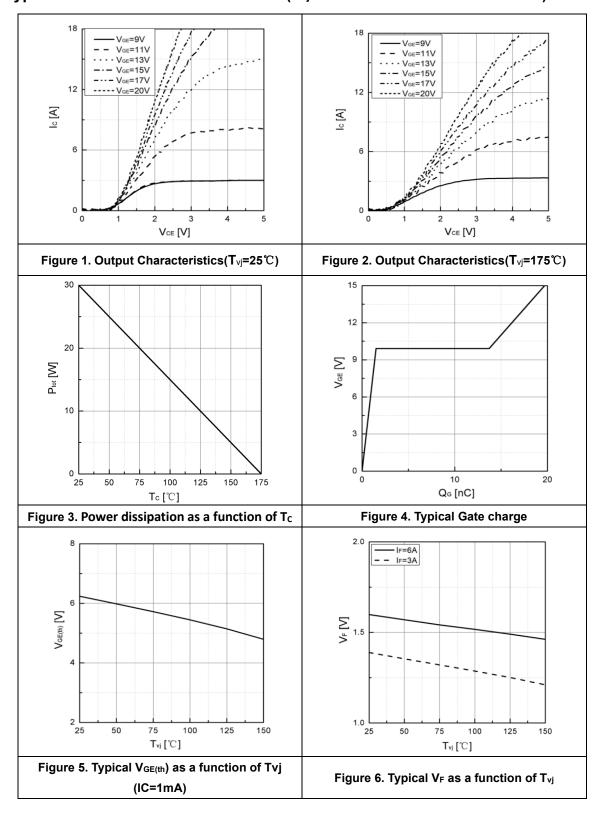
Symbol	Parameter	Ratings	Unit	
Vces	Collector-Emitter Voltage		650	V
V _{GES}	Gate-Emitter Voltage		±20	V
	0 11 1 0 1	T _C =25°C	12	Δ.
lc	Collector Current	T _C =100°C	6	A
Cpuls	Pulsed Collector Current, tp limited by T _{vjmax}		24	Α
В	T _A =25°C		30	14/
P _D	Power Dissipation	T _A =100°C	15	W
TvJ	Operating Junctio Temperature Range		-40~175	°C
T _{STG}	Storage Temperature Range		-55~150	°C
Tsc	Short circuit withstand time		10	μs

➤ Thermal Resistance Ratings (T_{vj}=25°C unless otherwise noted)

Symbol	Parameter	Ratings(MAX)	Unit
$R_{\theta JA}$	Junction-to-Ambient Thermal Resistance	90	
$R_{ heta JC}$	Junction-to-Case for IGBT, Thermal Resistance	5.0	°C/W
$R_{ heta JC}$	Junction-to-Case for Diode, Thermal Resistance	5.8	

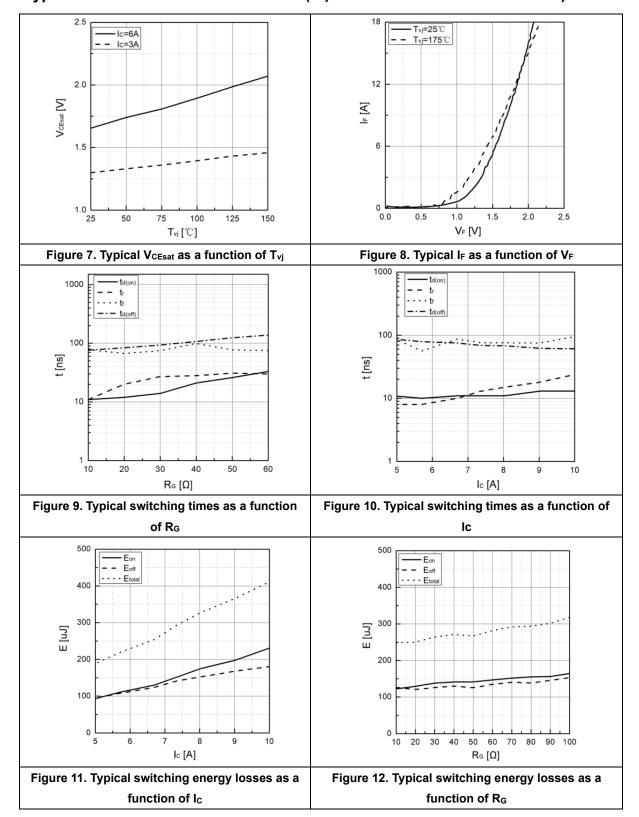
➤ Electrical Characteristics of IGBT (T_{vj}=25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-Emitter Breakdown Voltage	V _{GE} = 0V, I _C = 0.25mA	650			V
Ices	Collector-Emitter Leakage Current	V _{GE} =0V, V _{CE} =650V, T _{vj} =25°C			10	uA
I _{GES(F)}	Gate to Emitter Forward Leakage	V _{GE} = +20V, V _{CE} = 0V			100	nA
I _{GES(R)}	Gate to Emitter Reverse Leakage	V _{GE} = -20V, V _{CE} = 0V			-100	nA
$V_{\text{CE(sat)}}$	Collector-Emitter Saturation	Ic=6A, V _{GE} =15V, T _{vj} =25°C		1.7		V
V CE(sat)	Voltage	I _C =6A, V _{GE} =15V, T _{vj} =175°C		2.2		V
$V_{\text{GE}(th)}$	Gate Threshold Voltage	$I_C = 1 \text{mA}, V_{CE} = V_{GE}$	5.2	6.2	7.2	V
Cies	Input Capacitance			480		
Coes	Output Capacitance	$V_{CE} = 30V$, $V_{GE} = 0V$,		22		pF
Cres	Reverse Transfer Capacitance	f = 1MHz, T _{vj} = 25°C		8		
$T_{D(ON)}$	Turn-on delay time			10		
Tr	Rise time			8]
$T_{D(OFF)}$	Turn-off delay time	T _{vj} =25°C, V _{CC} =400V, I _C =6A,		79		ns
T_f	Fall time	V_{GE} =0/15V, R_g =10 Ω ,		56		
Eon	Turn-On Switching Loss	Inductive Load		0.11		
E _{off}	Turn-Off Switching Loss			0.10		mJ
Ets	Total Switching Loss			0.21		-
T _{D(ON)}	Turn-on delay time			11		
Tr	Rise time			10		
$T_{D(OFF)}$	Turn-off delay time	T _{vj} =175°C, V _{CC} =400V, I _C =6A,		108		ns
Tf	Fall time	V_{GE} =0/15V, R_{g} =10 Ω ,		89		
Eon	Turn-On Switching Loss	Inductive Load		0.16		
E _{off}	Turn-Off Switching Loss			0.16		mJ
Ets	Total Switching Loss			0.32		1
Q _G	Total Gate Charge	$V_{CC} = 520V, I_C = 6A,$ $V_{GE} = 0/15V$		19		nC


SSC65TR6GTF

➤ Electrical characteristics of Diode (T_{vj}=25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
)/F		IF=6A, T _{vj} =25°C		1.6		V
VF	Diode forward voltage	IF=6A, T _{vj} =175°C		1.4		V
Trr	Diode reverse recovery time			55		ns
Irm	Diode peak reverse recovery current	VR=400V IF=6A diF/dt=500A/μs, T _{vi} =25°C		10		Α
Qrr	Diode reverse recovery charge	a / a.t. 000/70 p.o., 1.vij 20 0		306		nC
Trr	Diode reverse recovery time			98		ns
Irm	Diode peak reverse recovery current	VR=400V IF=6A diF/dt=500A/µs, Tvi=175°C		12		Α
Qrr	Diode reverse recovery charge	/ 11 000. 1 µ 0, 1 vj 1 1 0 0		529		nC



➤ Typical Performance Characteristics (T_{vj} =25°C unless otherwise noted)

> Typical Performance Characteristics (T_{vj} =25℃ unless otherwise noted)

6/9

\succ Typical Performance Characteristics (T_{vj} =25°C unless otherwise noted)

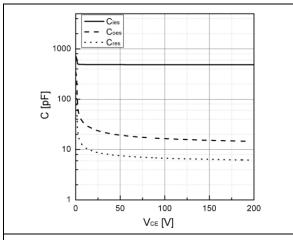
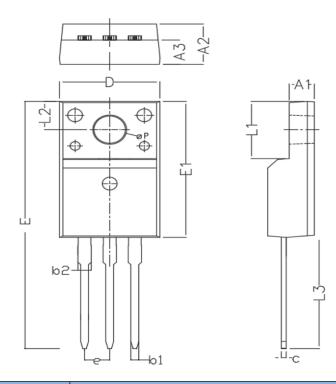



Figure 13. Typical capacitance as a function of $V_{\text{CE}}(\text{f=1Mhz},\,V_{\text{GE}}\text{=}0\text{V})$

Package Information

TO220F

Symbol	MILL IMETER			
Symbol	Min	Nom	Max	
A1	2.34	2.54	2.74	
A2	4.5	4.7	4.9	
A3	2.56	2.76	2.96	
b1	0.7	0.8	0.9	
b2	1.23	1.3	1.47	
С	0.45	0.5	0.6	
D	9.96	10.16	10.36	
E	28.35	28.85	29.35	
E1	15.67	15.87	16.07	
е	2.54REF			
L1	6.48	6.68	6.88	
L2	3.2	3.3	3.4	
L3	12.68	12.98	13.28	
øΡ	3.03	3.4	3.5	

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.